xso_proc/meta.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
// Copyright (c) 2024 Jonas Schäfer <jonas@zombofant.net>
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
//! # Parse Rust attributes
//!
//! This module is concerned with parsing attributes from the Rust "meta"
//! annotations on structs, enums, enum variants and fields.
use core::hash::{Hash, Hasher};
use proc_macro2::{Span, TokenStream};
use quote::{quote, quote_spanned};
use syn::{meta::ParseNestedMeta, spanned::Spanned, *};
use rxml_validation::NcName;
/// XML core namespace URI (for the `xml:` prefix)
pub const XMLNS_XML: &str = "http://www.w3.org/XML/1998/namespace";
/// XML namespace URI (for the `xmlns:` prefix)
pub const XMLNS_XMLNS: &str = "http://www.w3.org/2000/xmlns/";
macro_rules! reject_key {
($key:ident not on $not_allowed_on:literal $(only on $only_allowed_on:literal)?) => {
if let Some(ref $key) = $key {
return Err(Error::new_spanned(
$key,
concat!(
"`",
stringify!($key),
"` is not allowed on ",
$not_allowed_on,
$(
" (only on ",
$only_allowed_on,
")",
)?
),
));
}
};
($key:ident flag not on $not_allowed_on:literal $(only on $only_allowed_on:literal)?) => {
if let Flag::Present(ref $key) = $key {
return Err(Error::new(
*$key,
concat!(
"`",
stringify!($key),
"` is not allowed on ",
$not_allowed_on,
$(
" (only on ",
$only_allowed_on,
")",
)?
),
));
}
};
}
pub(crate) use reject_key;
/// Value for the `#[xml(namespace = ..)]` attribute.
#[derive(Debug, Clone)]
pub(crate) enum NamespaceRef {
/// The XML namespace is specified as a string literal.
LitStr(LitStr),
/// The XML namespace is specified as a path.
Path(Path),
}
impl NamespaceRef {
fn fudge(value: &str, span: Span) -> Self {
Self::LitStr(LitStr::new(value, span))
}
}
impl syn::parse::Parse for NamespaceRef {
fn parse(input: syn::parse::ParseStream<'_>) -> Result<Self> {
if input.peek(syn::LitStr) {
Ok(Self::LitStr(input.parse()?))
} else {
Ok(Self::Path(input.parse()?))
}
}
}
impl quote::ToTokens for NamespaceRef {
fn to_tokens(&self, tokens: &mut TokenStream) {
match self {
Self::LitStr(ref lit) => lit.to_tokens(tokens),
Self::Path(ref path) => path.to_tokens(tokens),
}
}
}
/// Value for the `#[xml(name = .. )]` attribute.
#[derive(Debug, Clone)]
pub(crate) enum NameRef {
/// The XML name is specified as a string literal.
Literal {
/// The validated XML name.
value: NcName,
/// The span of the original [`syn::LitStr`].
span: Span,
},
/// The XML name is specified as a path.
Path(Path),
}
impl Hash for NameRef {
fn hash<H: Hasher>(&self, h: &mut H) {
match self {
Self::Literal { ref value, .. } => value.hash(h),
Self::Path(ref path) => path.hash(h),
}
}
}
impl PartialEq for NameRef {
fn eq(&self, other: &NameRef) -> bool {
match self {
Self::Literal {
value: ref my_value,
..
} => match other {
Self::Literal {
value: ref other_value,
..
} => my_value == other_value,
_ => false,
},
Self::Path(ref my_path) => match other {
Self::Path(ref other_path) => my_path == other_path,
_ => false,
},
}
}
}
impl Eq for NameRef {}
impl syn::parse::Parse for NameRef {
fn parse(input: syn::parse::ParseStream<'_>) -> Result<Self> {
if input.peek(syn::LitStr) {
let s: LitStr = input.parse()?;
let span = s.span();
match NcName::try_from(s.value()) {
Ok(value) => Ok(Self::Literal { value, span }),
Err(e) => Err(Error::new(span, format!("not a valid XML name: {}", e))),
}
} else {
let p: Path = input.parse()?;
Ok(Self::Path(p))
}
}
}
impl quote::ToTokens for NameRef {
fn to_tokens(&self, tokens: &mut TokenStream) {
match self {
Self::Literal { ref value, span } => {
let span = *span;
let value = value.as_str();
let value = quote_spanned! { span=> #value };
// SAFETY: self.0 is a known-good NcName, so converting it to an
// NcNameStr is known to be safe.
// NOTE: we cannot use `quote_spanned! { self.span=> }` for the unsafe
// block as that would then in fact trip a `#[deny(unsafe_code)]` lint
// at the use site of the macro.
tokens.extend(quote! {
unsafe { ::xso::exports::rxml::NcNameStr::from_str_unchecked(#value) }
})
}
Self::Path(ref path) => path.to_tokens(tokens),
}
}
}
/// Represents the amount constraint used with child elements.
///
/// Currently, this only supports "one" (literal `1`) or "any amount" (`..`).
/// In the future, we might want to add support for any range pattern for
/// `usize` and any positive integer literal.
#[derive(Debug)]
pub(crate) enum AmountConstraint {
/// Equivalent to `1`
#[allow(dead_code)]
FixedSingle(Span),
/// Equivalent to `..`.
Any(Span),
}
impl syn::parse::Parse for AmountConstraint {
fn parse(input: syn::parse::ParseStream<'_>) -> Result<Self> {
if input.peek(LitInt) && !input.peek2(token::DotDot) && !input.peek2(token::DotDotEq) {
let lit: LitInt = input.parse()?;
let value: usize = lit.base10_parse()?;
if value == 1 {
Ok(Self::FixedSingle(lit.span()))
} else {
Err(Error::new(lit.span(), "only `1` and `..` are allowed here"))
}
} else {
let p: PatRange = input.parse()?;
if let Some(attr) = p.attrs.first() {
return Err(Error::new_spanned(attr, "attributes not allowed here"));
}
if let Some(start) = p.start.as_ref() {
return Err(Error::new_spanned(
start,
"only full ranges (`..`) are allowed here",
));
}
if let Some(end) = p.end.as_ref() {
return Err(Error::new_spanned(
end,
"only full ranges (`..`) are allowed here",
));
}
Ok(Self::Any(p.span()))
}
}
}
/// Represents a boolean flag from a `#[xml(..)]` attribute meta.
#[derive(Clone, Copy, Debug)]
pub(crate) enum Flag {
/// The flag is not set.
Absent,
/// The flag was set.
Present(
/// The span of the syntax element which enabled the flag.
///
/// This is used to generate useful error messages by pointing at the
/// specific place the flag was activated.
#[allow(dead_code)]
Span,
),
}
impl Flag {
/// Return true if the flag is set, false otherwise.
pub(crate) fn is_set(&self) -> bool {
match self {
Self::Absent => false,
Self::Present(_) => true,
}
}
/// Like `Option::take`, but for flags.
pub(crate) fn take(&mut self) -> Self {
let mut result = Flag::Absent;
core::mem::swap(&mut result, self);
result
}
}
impl<T: Spanned> From<T> for Flag {
fn from(other: T) -> Flag {
Flag::Present(other.span())
}
}
/// A pair of `namespace` and `name` keys.
#[derive(Debug, Default)]
pub(crate) struct QNameRef {
/// The XML namespace supplied.
pub(crate) namespace: Option<NamespaceRef>,
/// The XML name supplied.
pub(crate) name: Option<NameRef>,
}
impl QNameRef {
/// Attempt to incrementally parse this QNameRef.
///
/// If `meta` contains either `namespace` or `name` keys, they are
/// processed and either `Ok(None)` or an error is returned.
///
/// If no matching key is found, `Ok(Some(meta))` is returned for further
/// processing.
fn parse_incremental_from_meta<'x>(
&mut self,
meta: ParseNestedMeta<'x>,
) -> Result<Option<ParseNestedMeta<'x>>> {
if meta.path.is_ident("name") {
if self.name.is_some() {
return Err(Error::new_spanned(meta.path, "duplicate `name` key"));
}
let value = meta.value()?;
let name_span = value.span();
let (new_namespace, new_name) = parse_prefixed_name(value)?;
if let Some(new_namespace) = new_namespace {
if let Some(namespace) = self.namespace.as_ref() {
let mut error = Error::new(
name_span,
"cannot combine `namespace` key with prefixed `name`",
);
error.combine(Error::new_spanned(namespace, "`namespace` was set here"));
return Err(error);
}
self.namespace = Some(new_namespace);
}
self.name = Some(new_name);
Ok(None)
} else if meta.path.is_ident("namespace") {
if self.namespace.is_some() {
return Err(Error::new_spanned(
meta.path,
"duplicate `namespace` key or `name` key has prefix",
));
}
self.namespace = Some(meta.value()?.parse()?);
Ok(None)
} else {
Ok(Some(meta))
}
}
}
/// Contents of an `#[xml(..)]` attribute on a struct, enum variant, or enum.
#[derive(Debug)]
pub(crate) struct XmlCompoundMeta {
/// The span of the `#[xml(..)]` meta from which this was parsed.
///
/// This is useful for error messages.
pub(crate) span: Span,
/// The value assigned to `namespace` and `name` fields inside
/// `#[xml(..)]`, if any.
pub(crate) qname: QNameRef,
/// The debug flag.
pub(crate) debug: Flag,
/// The value assigned to `builder` inside `#[xml(..)]`, if any.
pub(crate) builder: Option<Ident>,
/// The value assigned to `iterator` inside `#[xml(..)]`, if any.
pub(crate) iterator: Option<Ident>,
/// The value assigned to `on_unknown_attribute` inside `#[xml(..)]`, if
/// any.
pub(crate) on_unknown_attribute: Option<Ident>,
/// The value assigned to `on_unknown_child` inside `#[xml(..)]`, if
/// any.
pub(crate) on_unknown_child: Option<Ident>,
/// The exhaustive flag.
pub(crate) exhaustive: Flag,
/// The transparent flag.
pub(crate) transparent: Flag,
}
impl XmlCompoundMeta {
/// Parse the meta values from a `#[xml(..)]` attribute.
///
/// Undefined options or options with incompatible values are rejected
/// with an appropriate compile-time error.
fn parse_from_attribute(attr: &Attribute) -> Result<Self> {
let mut qname = QNameRef::default();
let mut builder = None;
let mut iterator = None;
let mut on_unknown_attribute = None;
let mut on_unknown_child = None;
let mut debug = Flag::Absent;
let mut exhaustive = Flag::Absent;
let mut transparent = Flag::Absent;
attr.parse_nested_meta(|meta| {
if meta.path.is_ident("debug") {
if debug.is_set() {
return Err(Error::new_spanned(meta.path, "duplicate `debug` key"));
}
debug = (&meta.path).into();
Ok(())
} else if meta.path.is_ident("builder") {
if builder.is_some() {
return Err(Error::new_spanned(meta.path, "duplicate `builder` key"));
}
builder = Some(meta.value()?.parse()?);
Ok(())
} else if meta.path.is_ident("iterator") {
if iterator.is_some() {
return Err(Error::new_spanned(meta.path, "duplicate `iterator` key"));
}
iterator = Some(meta.value()?.parse()?);
Ok(())
} else if meta.path.is_ident("on_unknown_attribute") {
if on_unknown_attribute.is_some() {
return Err(Error::new_spanned(
meta.path,
"duplicate `on_unknown_attribute` key",
));
}
on_unknown_attribute = Some(meta.value()?.parse()?);
Ok(())
} else if meta.path.is_ident("on_unknown_child") {
if on_unknown_child.is_some() {
return Err(Error::new_spanned(
meta.path,
"duplicate `on_unknown_child` key",
));
}
on_unknown_child = Some(meta.value()?.parse()?);
Ok(())
} else if meta.path.is_ident("exhaustive") {
if exhaustive.is_set() {
return Err(Error::new_spanned(meta.path, "duplicate `exhaustive` key"));
}
exhaustive = (&meta.path).into();
Ok(())
} else if meta.path.is_ident("transparent") {
if transparent.is_set() {
return Err(Error::new_spanned(meta.path, "duplicate `transparent` key"));
}
transparent = (&meta.path).into();
Ok(())
} else {
match qname.parse_incremental_from_meta(meta)? {
None => Ok(()),
Some(meta) => Err(Error::new_spanned(meta.path, "unsupported key")),
}
}
})?;
Ok(Self {
span: attr.span(),
qname,
debug,
builder,
iterator,
on_unknown_attribute,
on_unknown_child,
exhaustive,
transparent,
})
}
/// Search through `attrs` for a single `#[xml(..)]` attribute and parse
/// it.
///
/// Undefined options or options with incompatible values are rejected
/// with an appropriate compile-time error.
///
/// If more than one `#[xml(..)]` attribute is found, an error is
/// emitted.
///
/// If no `#[xml(..)]` attribute is found, `None` is returned.
pub(crate) fn try_parse_from_attributes(attrs: &[Attribute]) -> Result<Option<Self>> {
let mut result = None;
for attr in attrs {
if !attr.path().is_ident("xml") {
continue;
}
if result.is_some() {
return Err(syn::Error::new_spanned(
attr.path(),
"only one #[xml(..)] per struct or enum variant allowed",
));
}
result = Some(Self::parse_from_attribute(attr)?);
}
Ok(result)
}
/// Search through `attrs` for a single `#[xml(..)]` attribute and parse
/// it.
///
/// Undefined options or options with incompatible values are rejected
/// with an appropriate compile-time error.
///
/// If more than one or no `#[xml(..)]` attribute is found, an error is
/// emitted.
pub(crate) fn parse_from_attributes(attrs: &[Attribute]) -> Result<Self> {
match Self::try_parse_from_attributes(attrs)? {
Some(v) => Ok(v),
None => Err(syn::Error::new(
Span::call_site(),
"#[xml(..)] attribute required on struct or enum variant",
)),
}
}
}
/// Return true if the tokens the cursor points at are a valid type path
/// prefix.
///
/// This does not advance the parse stream.
///
/// If the tokens *do* look like a type path, a Span which points at the first
/// `<` encountered is returned. This can be used for a helpful error message
/// in case parsing the type path does then fail.
fn maybe_type_path(p: parse::ParseStream<'_>) -> (bool, Option<Span>) {
// ParseStream cursors do not advance the stream, but they are also rather
// unwieldy to use. Prepare for a lot of `let .. = ..`.
let cursor = if p.peek(token::PathSep) {
// If we have a path separator, we need to skip that initially. We
// do this by skipping two punctuations. We use unwrap() here because
// we already know for sure that we see two punctuation items (because
// of the peek).
p.cursor().punct().unwrap().1.punct().unwrap().1
} else {
// No `::` initially, so we just take what we have.
p.cursor()
};
// Now we loop over `$ident::` segments. If we find anything but a `:`
// after the ident, we exit. Depending on *what* we find, we either exit
// true or false, but see for yourself.
let mut cursor = cursor;
loop {
// Here we look for the identifier, but we do not care for its
// contents.
let Some((_, new_cursor)) = cursor.ident() else {
return (false, None);
};
cursor = new_cursor;
// Now we see what actually follows the ident (it must be punctuation
// for it to be a type path...)
let Some((punct, new_cursor)) = cursor.punct() else {
return (false, None);
};
cursor = new_cursor;
match punct.as_char() {
// Looks like a `foo<..`, we treat that as a type path for the
// reasons stated in [`parse_codec_expr`]'s doc.
'<' => return (true, Some(punct.span())),
// Continue looking ahead: looks like a path separator.
':' => (),
// Anything else (such as `,` (separating another argument most
// likely), or `.` (a method call?)) we treat as "not a type
// path".
_ => return (false, None),
}
// If we are here, we saw a `:`. Look for the second one.
let Some((punct, new_cursor)) = cursor.punct() else {
return (false, None);
};
cursor = new_cursor;
if punct.as_char() != ':' {
// If it is not another `:`, it cannot be a type path.
return (false, None);
}
// And round and round and round it goes.
// We will terminate eventually because the cursor will return None
// on any of the lookups because parse streams are (hopefully!)
// finite. Most likely, we'll however encounter a `<` or other non-`:`
// punctuation first.
}
}
/// Parse expressions passed to `codec`.
///
/// Those will generally be paths to unit type constructors (such as `Foo`)
/// or references to static values or chains of function calls.
///
/// In the case of unit type constructors for generic types, users may type
/// for example `FixedHex<20>`, thinking they are writing a type path. However,
/// while `FixedHex<20>` is indeed a valid type path, it is not a valid
/// expression for a unit type constructor. Instead it is parsed as
/// `FixedHex < 20` and then a syntax error.
///
/// We however know that `Foo < Bar` is never a valid expression for a type.
/// Thus, we can be smart about this and inject the `::` at the right place
/// automatically.
fn parse_codec_expr(p: parse::ParseStream<'_>) -> Result<(Expr, Option<Error>)> {
let (maybe_type_path, punct_span) = maybe_type_path(p);
if maybe_type_path {
let helpful_error =
punct_span.map(|span| Error::new(span, "help: try inserting a `::` before this `<`"));
let mut type_path: TypePath = match p.parse() {
Ok(v) => v,
Err(mut e) => match helpful_error {
Some(help) => {
e.combine(help);
return Err(e);
}
None => return Err(e),
},
};
// We got a type path -- so we now inject the `::` before any `<` as
// needed.
for segment in type_path.path.segments.iter_mut() {
match segment.arguments {
PathArguments::AngleBracketed(ref mut arguments) => {
let span = arguments.span();
arguments
.colon2_token
.get_or_insert_with(|| token::PathSep {
spans: [span, span],
});
}
_ => (),
}
}
Ok((
Expr::Path(ExprPath {
attrs: Vec::new(),
qself: type_path.qself,
path: type_path.path,
}),
helpful_error,
))
} else {
p.parse().map(|x| (x, None))
}
}
/// Parse an XML name while resolving built-in namespace prefixes.
fn parse_prefixed_name(
value: syn::parse::ParseStream<'_>,
) -> Result<(Option<NamespaceRef>, NameRef)> {
if !value.peek(LitStr) {
// if we don't have a string literal next, we delegate to the default
// `NameRef` parser.
return Ok((None, value.parse()?));
}
let name: LitStr = value.parse()?;
let name_span = name.span();
let (prefix, name) = match name
.value()
.try_into()
.and_then(|name: rxml_validation::Name| name.split_name())
{
Ok(v) => v,
Err(e) => {
return Err(Error::new(
name_span,
format!("not a valid XML name: {}", e),
))
}
};
let name = NameRef::Literal {
value: name,
span: name_span,
};
if let Some(prefix) = prefix {
let namespace_uri = match prefix.as_str() {
"xml" => XMLNS_XML,
"xmlns" => XMLNS_XMLNS,
other => return Err(Error::new(
name_span,
format!("prefix `{}` is not a built-in prefix and cannot be used. specify the desired namespace using the `namespace` key instead.", other)
)),
};
Ok((Some(NamespaceRef::fudge(namespace_uri, name_span)), name))
} else {
Ok((None, name))
}
}
/// Contents of an `#[xml(..)]` attribute on a struct or enum variant member.
#[derive(Debug)]
pub(crate) enum XmlFieldMeta {
/// `#[xml(attribute)]`, `#[xml(attribute = ..)]` or `#[xml(attribute(..))]`
Attribute {
/// The span of the `#[xml(attribute)]` meta from which this was parsed.
///
/// This is useful for error messages.
span: Span,
/// The namespace/name keys.
qname: QNameRef,
/// The `default` flag.
default_: Flag,
/// An explicit type override, only usable within extracts.
type_: Option<Type>,
/// The path to the optional codec type.
codec: Option<Expr>,
},
/// `#[xml(text)]`
Text {
/// The span of the `#[xml(text)]` meta from which this was parsed.
///
/// This is useful for error messages.
span: Span,
/// The path to the optional codec type.
codec: Option<Expr>,
/// An explicit type override, only usable within extracts.
type_: Option<Type>,
},
/// `#[xml(child)`
Child {
/// The span of the `#[xml(child)]` meta from which this was parsed.
///
/// This is useful for error messages.
span: Span,
/// The `default` flag.
default_: Flag,
/// The `n` flag.
amount: Option<AmountConstraint>,
},
/// `#[xml(extract)]
Extract {
/// The span of the `#[xml(extract)]` meta from which this was parsed.
///
/// This is useful for error messages.
span: Span,
/// The namespace/name keys.
qname: QNameRef,
/// The `n` flag.
amount: Option<AmountConstraint>,
/// The `default` flag.
default_: Flag,
/// The `fields` nested meta.
fields: Vec<XmlFieldMeta>,
/// The `on_unknown_attribute` value.
on_unknown_attribute: Option<Ident>,
/// The `on_unknown_child` value.
on_unknown_child: Option<Ident>,
},
/// `#[xml(element)]`
Element {
/// The span of the `#[xml(element)]` meta from which this was parsed.
///
/// This is useful for error messages.
span: Span,
/// The `n` flag.
amount: Option<AmountConstraint>,
},
/// `#[xml(flag)]
Flag {
/// The span of the `#[xml(flag)]` meta from which this was parsed.
///
/// This is useful for error messages.
span: Span,
/// The namespace/name keys.
qname: QNameRef,
},
}
impl XmlFieldMeta {
/// Parse a `#[xml(attribute(..))]` meta.
///
/// That meta can have three distinct syntax styles:
/// - argument-less: `#[xml(attribute)]`
/// - shorthand: `#[xml(attribute = ..)]`
/// - full: `#[xml(attribute(..))]`
fn attribute_from_meta(meta: ParseNestedMeta<'_>) -> Result<Self> {
if meta.input.peek(Token![=]) {
// shorthand syntax
let (namespace, name) = parse_prefixed_name(meta.value()?)?;
Ok(Self::Attribute {
span: meta.path.span(),
qname: QNameRef {
name: Some(name),
namespace,
},
default_: Flag::Absent,
type_: None,
codec: None,
})
} else if meta.input.peek(syn::token::Paren) {
// full syntax
let mut qname = QNameRef::default();
let mut default_ = Flag::Absent;
let mut type_ = None;
let mut codec = None;
meta.parse_nested_meta(|meta| {
if meta.path.is_ident("default") {
if default_.is_set() {
return Err(Error::new_spanned(meta.path, "duplicate `default` key"));
}
default_ = (&meta.path).into();
Ok(())
} else if meta.path.is_ident("type_") {
if type_.is_some() {
return Err(Error::new_spanned(meta.path, "duplicate `type_` key"));
}
type_ = Some(meta.value()?.parse()?);
Ok(())
} else if meta.path.is_ident("codec") {
if codec.is_some() {
return Err(Error::new_spanned(meta.path, "duplicate `codec` key"));
}
let (new_codec, helpful_error) = parse_codec_expr(meta.value()?)?;
// See the comment at the top of text_from_meta() below for why we
// do this.
let lookahead = meta.input.lookahead1();
if !lookahead.peek(Token![,]) && !meta.input.is_empty() {
if let Some(helpful_error) = helpful_error {
let mut e = lookahead.error();
e.combine(helpful_error);
return Err(e);
}
}
codec = Some(new_codec);
Ok(())
} else {
match qname.parse_incremental_from_meta(meta)? {
None => Ok(()),
Some(meta) => Err(Error::new_spanned(meta.path, "unsupported key")),
}
}
})?;
Ok(Self::Attribute {
span: meta.path.span(),
qname,
default_,
type_,
codec,
})
} else {
// argument-less syntax
Ok(Self::Attribute {
span: meta.path.span(),
qname: QNameRef::default(),
default_: Flag::Absent,
type_: None,
codec: None,
})
}
}
/// Parse a `#[xml(text)]` meta.
fn text_from_meta(meta: ParseNestedMeta<'_>) -> Result<Self> {
if meta.input.peek(Token![=]) {
let (codec, helpful_error) = parse_codec_expr(meta.value()?)?;
// A meta value can only be followed by either a `,`, or the end
// of the parse stream (because of the delimited group ending).
// Hence we check we are there. And if we are *not* there, we emit
// an error straight away, with the helpful addition from the
// `parse_codec_expr` if we have it.
//
// If we do not do this, the user gets a rather confusing
// "expected `,`" message if the `maybe_type_path` guess was
// wrong.
let lookahead = meta.input.lookahead1();
if !lookahead.peek(Token![,]) && !meta.input.is_empty() {
if let Some(helpful_error) = helpful_error {
let mut e = lookahead.error();
e.combine(helpful_error);
return Err(e);
}
}
Ok(Self::Text {
span: meta.path.span(),
type_: None,
codec: Some(codec),
})
} else if meta.input.peek(syn::token::Paren) {
let mut codec: Option<Expr> = None;
let mut type_: Option<Type> = None;
meta.parse_nested_meta(|meta| {
if meta.path.is_ident("codec") {
if codec.is_some() {
return Err(Error::new_spanned(meta.path, "duplicate `codec` key"));
}
let (new_codec, helpful_error) = parse_codec_expr(meta.value()?)?;
// See above (at the top-ish of this function) for why we
// do this.
let lookahead = meta.input.lookahead1();
if !lookahead.peek(Token![,]) && !meta.input.is_empty() {
if let Some(helpful_error) = helpful_error {
let mut e = lookahead.error();
e.combine(helpful_error);
return Err(e);
}
}
codec = Some(new_codec);
Ok(())
} else if meta.path.is_ident("type_") {
if type_.is_some() {
return Err(Error::new_spanned(meta.path, "duplicate `type_` key"));
}
type_ = Some(meta.value()?.parse()?);
Ok(())
} else {
Err(Error::new_spanned(meta.path, "unsupported key"))
}
})?;
Ok(Self::Text {
span: meta.path.span(),
type_,
codec,
})
} else {
Ok(Self::Text {
span: meta.path.span(),
type_: None,
codec: None,
})
}
}
/// Parse a `#[xml(child)]` meta.
fn child_from_meta(meta: ParseNestedMeta<'_>) -> Result<Self> {
if meta.input.peek(syn::token::Paren) {
let mut default_ = Flag::Absent;
let mut amount = None;
meta.parse_nested_meta(|meta| {
if meta.path.is_ident("default") {
if default_.is_set() {
return Err(Error::new_spanned(meta.path, "duplicate `default` key"));
}
default_ = (&meta.path).into();
Ok(())
} else if meta.path.is_ident("n") {
if amount.is_some() {
return Err(Error::new_spanned(meta.path, "duplicate `n` key"));
}
amount = Some(meta.value()?.parse()?);
Ok(())
} else {
Err(Error::new_spanned(meta.path, "unsupported key"))
}
})?;
Ok(Self::Child {
span: meta.path.span(),
default_,
amount,
})
} else {
Ok(Self::Child {
span: meta.path.span(),
default_: Flag::Absent,
amount: None,
})
}
}
/// Parse a `#[xml(extract)]` meta.
fn extract_from_meta(meta: ParseNestedMeta<'_>) -> Result<Self> {
let mut qname = QNameRef::default();
let mut fields = None;
let mut amount = None;
let mut on_unknown_attribute = None;
let mut on_unknown_child = None;
let mut default_ = Flag::Absent;
meta.parse_nested_meta(|meta| {
if meta.path.is_ident("default") {
if default_.is_set() {
return Err(Error::new_spanned(meta.path, "duplicate `default` key"));
}
default_ = (&meta.path).into();
Ok(())
} else if meta.path.is_ident("fields") {
if let Some((fields_span, _)) = fields.as_ref() {
let mut error = Error::new_spanned(meta.path, "duplicate `fields` meta");
error.combine(Error::new(*fields_span, "previous `fields` meta was here"));
return Err(error);
}
let mut new_fields = Vec::new();
meta.parse_nested_meta(|meta| {
new_fields.push(XmlFieldMeta::parse_from_meta(meta)?);
Ok(())
})?;
fields = Some((meta.path.span(), new_fields));
Ok(())
} else if meta.path.is_ident("n") {
if amount.is_some() {
return Err(Error::new_spanned(meta.path, "duplicate `n` key"));
}
amount = Some(meta.value()?.parse()?);
Ok(())
} else if meta.path.is_ident("on_unknown_attribute") {
if on_unknown_attribute.is_some() {
return Err(Error::new_spanned(
meta.path,
"duplicate `on_unknown_attribute` key",
));
}
on_unknown_attribute = Some(meta.value()?.parse()?);
Ok(())
} else if meta.path.is_ident("on_unknown_child") {
if on_unknown_child.is_some() {
return Err(Error::new_spanned(
meta.path,
"duplicate `on_unknown_child` key",
));
}
on_unknown_child = Some(meta.value()?.parse()?);
Ok(())
} else {
match qname.parse_incremental_from_meta(meta)? {
None => Ok(()),
Some(meta) => Err(Error::new_spanned(meta.path, "unsupported key")),
}
}
})?;
let fields = fields.map(|(_, x)| x).unwrap_or_else(Vec::new);
Ok(Self::Extract {
span: meta.path.span(),
default_,
qname,
fields,
amount,
on_unknown_attribute,
on_unknown_child,
})
}
/// Parse a `#[xml(element)]` meta.
fn element_from_meta(meta: ParseNestedMeta<'_>) -> Result<Self> {
let mut amount = None;
meta.parse_nested_meta(|meta| {
if meta.path.is_ident("n") {
if amount.is_some() {
return Err(Error::new_spanned(meta.path, "duplicate `n` key"));
}
amount = Some(meta.value()?.parse()?);
Ok(())
} else {
Err(Error::new_spanned(meta.path, "unsupported key"))
}
})?;
Ok(Self::Element {
span: meta.path.span(),
amount,
})
}
/// Parse a `#[xml(flag)]` meta.
fn flag_from_meta(meta: ParseNestedMeta<'_>) -> Result<Self> {
let mut qname = QNameRef::default();
if meta.input.peek(syn::token::Paren) {
meta.parse_nested_meta(|meta| match qname.parse_incremental_from_meta(meta)? {
None => Ok(()),
Some(meta) => Err(Error::new_spanned(meta.path, "unsupported key")),
})?;
}
Ok(Self::Flag {
span: meta.path.span(),
qname,
})
}
/// Parse [`Self`] from a nestd meta, switching on the identifier
/// of that nested meta.
fn parse_from_meta(meta: ParseNestedMeta<'_>) -> Result<Self> {
if meta.path.is_ident("attribute") {
Self::attribute_from_meta(meta)
} else if meta.path.is_ident("text") {
Self::text_from_meta(meta)
} else if meta.path.is_ident("child") {
Self::child_from_meta(meta)
} else if meta.path.is_ident("extract") {
Self::extract_from_meta(meta)
} else if meta.path.is_ident("element") {
Self::element_from_meta(meta)
} else if meta.path.is_ident("flag") {
Self::flag_from_meta(meta)
} else {
Err(Error::new_spanned(meta.path, "unsupported field meta"))
}
}
/// Parse an `#[xml(..)]` meta on a field.
///
/// This switches based on the first identifier within the `#[xml(..)]`
/// meta and generates an enum variant accordingly.
///
/// Only a single nested meta is allowed; more than one will be
/// rejected with an appropriate compile-time error.
///
/// If no meta is contained at all, a compile-time error is generated.
///
/// Undefined options or options with incompatible values are rejected
/// with an appropriate compile-time error.
pub(crate) fn parse_from_attribute(attr: &Attribute) -> Result<Self> {
let mut result: Option<Self> = None;
attr.parse_nested_meta(|meta| {
if result.is_some() {
return Err(Error::new_spanned(
meta.path,
"multiple field type specifiers are not supported",
));
}
result = Some(Self::parse_from_meta(meta)?);
Ok(())
})?;
if let Some(result) = result {
Ok(result)
} else {
Err(Error::new_spanned(
attr,
"missing field type specifier within `#[xml(..)]`",
))
}
}
/// Find and parse a `#[xml(..)]` meta on a field.
///
/// This invokes [`Self::parse_from_attribute`] internally on the first
/// encountered `#[xml(..)]` meta.
///
/// If not exactly one `#[xml(..)]` meta is encountered, an error is
/// returned. The error is spanned to `err_span`.
pub(crate) fn parse_from_attributes(attrs: &[Attribute], err_span: &Span) -> Result<Self> {
let mut result: Option<Self> = None;
for attr in attrs {
if !attr.path().is_ident("xml") {
continue;
}
if result.is_some() {
return Err(Error::new_spanned(
attr,
"only one #[xml(..)] attribute per field allowed.",
));
}
result = Some(Self::parse_from_attribute(attr)?);
}
if let Some(result) = result {
Ok(result)
} else {
Err(Error::new(*err_span, "missing #[xml(..)] meta on field"))
}
}
/// Return a span which points at the meta which constructed this
/// XmlFieldMeta.
pub(crate) fn span(&self) -> Span {
match self {
Self::Attribute { ref span, .. } => *span,
Self::Child { ref span, .. } => *span,
Self::Text { ref span, .. } => *span,
Self::Extract { ref span, .. } => *span,
Self::Element { ref span, .. } => *span,
Self::Flag { ref span, .. } => *span,
}
}
/// Extract an explicit type specification if it exists.
pub(crate) fn take_type(&mut self) -> Option<Type> {
match self {
Self::Attribute { ref mut type_, .. } => type_.take(),
Self::Text { ref mut type_, .. } => type_.take(),
_ => None,
}
}
}