xso_proc/field/child.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
// Copyright (c) 2024 Jonas Schäfer <jonas@zombofant.net>
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
//! This module concerns the processing of typed child elements.
//!
//! In particular, it provides both `#[xml(extract)]` and `#[xml(child)]`
//! implementations in a single type.
use proc_macro2::{Span, TokenStream};
use quote::{quote, quote_spanned};
use syn::{spanned::Spanned, *};
use crate::compound::Compound;
use crate::error_message::{self, ParentRef};
use crate::meta::{AmountConstraint, Flag, NameRef, NamespaceRef};
use crate::scope::{AsItemsScope, FromEventsScope};
use crate::types::{
as_xml_iter_fn, default_fn, extend_fn, from_events_fn, from_xml_builder_ty,
into_iterator_into_iter_fn, into_iterator_item_ty, into_iterator_iter_ty, item_iter_ty,
option_as_xml_ty, option_ty, ref_ty, ty_from_ident,
};
use super::{Field, FieldBuilderPart, FieldIteratorPart, FieldTempInit, NestedMatcher};
/// The field maps to a child
pub(super) struct ChildField {
/// Flag indicating whether the value should be defaulted if the
/// child is absent.
pub(super) default_: Flag,
/// Number of child elements allowed.
pub(super) amount: AmountConstraint,
/// If set, the child element is not parsed as a field implementing
/// `FromXml` / `AsXml`, but instead its contents are extracted.
pub(super) extract: Option<ExtractDef>,
}
impl Field for ChildField {
fn make_builder_part(
&self,
scope: &FromEventsScope,
container_name: &ParentRef,
member: &Member,
ty: &Type,
) -> Result<FieldBuilderPart> {
let (element_ty, is_container) = match self.amount {
AmountConstraint::FixedSingle(_) => (ty.clone(), false),
AmountConstraint::Any(_) => (into_iterator_item_ty(ty.clone()), true),
};
let (extra_defs, matcher, fetch, builder) = match self.extract {
Some(ref extract) => extract.make_from_xml_builder_parts(
scope,
container_name,
member,
is_container,
ty,
)?,
None => {
let FromEventsScope {
ref substate_result,
..
} = scope;
let from_events = from_events_fn(element_ty.clone());
let from_xml_builder = from_xml_builder_ty(element_ty.clone());
let matcher = quote! { #from_events(name, attrs) };
let builder = from_xml_builder;
(
TokenStream::default(),
matcher,
quote! { #substate_result },
builder,
)
}
};
let field_access = scope.access_field(member);
match self.amount {
AmountConstraint::FixedSingle(_) => {
let missing_msg = error_message::on_missing_child(container_name, member);
let duplicate_msg = error_message::on_duplicate_child(container_name, member);
let on_absent = match self.default_ {
Flag::Absent => quote! {
return ::core::result::Result::Err(::xso::error::Error::Other(#missing_msg).into())
},
Flag::Present(_) => {
let default_ = default_fn(element_ty.clone());
quote! {
#default_()
}
}
};
Ok(FieldBuilderPart::Nested {
extra_defs,
value: FieldTempInit {
init: quote! { ::core::option::Option::None },
ty: option_ty(ty.clone()),
},
matcher: NestedMatcher::Selective(quote! {
match #matcher {
::core::result::Result::Ok(v) => if #field_access.is_some() {
::core::result::Result::Err(::xso::error::FromEventsError::Invalid(::xso::error::Error::Other(#duplicate_msg)))
} else {
::core::result::Result::Ok(v)
},
::core::result::Result::Err(e) => ::core::result::Result::Err(e),
}
}),
builder,
collect: quote! {
#field_access = ::core::option::Option::Some(#fetch);
},
finalize: quote! {
match #field_access {
::core::option::Option::Some(value) => value,
::core::option::Option::None => #on_absent,
}
},
})
}
AmountConstraint::Any(_) => {
let ty_extend = extend_fn(ty.clone(), element_ty.clone());
let ty_default = default_fn(ty.clone());
Ok(FieldBuilderPart::Nested {
extra_defs,
value: FieldTempInit {
init: quote! { #ty_default() },
ty: ty.clone(),
},
matcher: NestedMatcher::Selective(matcher),
builder,
collect: quote! {
#ty_extend(&mut #field_access, [#fetch]);
},
finalize: quote! { #field_access },
})
}
}
}
fn make_iterator_part(
&self,
scope: &AsItemsScope,
container_name: &ParentRef,
bound_name: &Ident,
member: &Member,
ty: &Type,
) -> Result<FieldIteratorPart> {
let AsItemsScope { ref lifetime, .. } = scope;
let (item_ty, is_container) = match self.amount {
AmountConstraint::FixedSingle(_) => (ty.clone(), false),
AmountConstraint::Any(_) => {
// This should give us the type of element stored in the
// collection.
(into_iterator_item_ty(ty.clone()), true)
}
};
let (extra_defs, init, iter_ty) = match self.extract {
Some(ref extract) => extract.make_as_item_iter_parts(
scope,
ty,
container_name,
bound_name,
member,
is_container,
)?,
None => {
let as_xml_iter = as_xml_iter_fn(item_ty.clone());
let item_iter = item_iter_ty(item_ty.clone(), lifetime.clone());
(
TokenStream::default(),
quote! { #as_xml_iter(#bound_name)? },
item_iter,
)
}
};
match self.amount {
AmountConstraint::FixedSingle(_) => Ok(FieldIteratorPart::Content {
extra_defs,
value: FieldTempInit { init, ty: iter_ty },
generator: quote! {
#bound_name.next().transpose()
},
}),
AmountConstraint::Any(_) => {
// This is the collection type we actually work
// with -- as_xml_iter uses references after all.
let ty = ref_ty(ty.clone(), lifetime.clone());
// But the iterator for iterating over the elements
// inside the collection must use the ref type.
let element_iter = into_iterator_iter_ty(ty.clone());
// And likewise the into_iter impl.
let into_iter = into_iterator_into_iter_fn(ty.clone());
let state_ty = Type::Tuple(TypeTuple {
paren_token: token::Paren::default(),
elems: [element_iter, option_ty(iter_ty)].into_iter().collect(),
});
Ok(FieldIteratorPart::Content {
extra_defs,
value: FieldTempInit {
init: quote! {
(#into_iter(#bound_name), ::core::option::Option::None)
},
ty: state_ty,
},
generator: quote! {
loop {
if let ::core::option::Option::Some(current) = #bound_name.1.as_mut() {
if let ::core::option::Option::Some(item) = current.next() {
break ::core::option::Option::Some(item).transpose();
}
}
if let ::core::option::Option::Some(item) = #bound_name.0.next() {
#bound_name.1 = ::core::option::Option::Some({
let #bound_name = item;
#init
});
} else {
break ::core::result::Result::Ok(::core::option::Option::None)
}
}
},
})
}
}
}
}
/// Definition of what to extract from a child element.
pub(super) struct ExtractDef {
/// The XML namespace of the child to extract data from.
pub(super) xml_namespace: NamespaceRef,
/// The XML name of the child to extract data from.
pub(super) xml_name: NameRef,
/// Compound which contains the arguments of the `extract(..)` meta
/// (except the `from`), transformed into a struct with unnamed
/// fields.
///
/// This is used to generate the parsing/serialisation code, by
/// essentially "declaring" a shim struct, as if it were a real Rust
/// struct, and using the result of the parsing process directly for
/// the field on which the `extract(..)` option was used, instead of
/// putting it into a Rust struct.
pub(super) parts: Compound,
}
impl ExtractDef {
/// Construct
/// [`FieldBuilderPart::Nested::extra_defs`],
/// [`FieldBuilderPart::Nested::matcher`],
/// an expression which pulls the extraction result from
/// `substate_result`,
/// and the [`FieldBuilderPart::Nested::builder`] type.
fn make_from_xml_builder_parts(
&self,
scope: &FromEventsScope,
container_name: &ParentRef,
member: &Member,
collecting_into_container: bool,
output_ty: &Type,
) -> Result<(TokenStream, TokenStream, TokenStream, Type)> {
let FromEventsScope {
ref substate_result,
..
} = scope;
let xml_namespace = &self.xml_namespace;
let xml_name = &self.xml_name;
let from_xml_builder_ty_ident = scope.make_member_type_name(member, "FromXmlBuilder");
let state_ty_ident = quote::format_ident!("{}State", from_xml_builder_ty_ident,);
let extra_defs = self.parts.make_from_events_statemachine(
&state_ty_ident,
&container_name.child(member.clone()),
"",
)?.with_augmented_init(|init| quote! {
if name.0 == #xml_namespace && name.1 == #xml_name {
#init
} else {
::core::result::Result::Err(::xso::error::FromEventsError::Mismatch { name, attrs })
}
}).compile().render(
&Visibility::Inherited,
&from_xml_builder_ty_ident,
&state_ty_ident,
&self.parts.to_tuple_ty().into(),
)?;
let from_xml_builder_ty = ty_from_ident(from_xml_builder_ty_ident.clone()).into();
let matcher = quote! { #state_ty_ident::new(name, attrs).map(|x| #from_xml_builder_ty_ident(::core::option::Option::Some(x))) };
let inner_ty = self.parts.to_single_or_tuple_ty();
let fetch = if self.parts.field_count() == 1 {
// If we extract only a single field, we automatically unwrap the
// tuple, because that behaviour is more obvious to users.
quote! { #substate_result.0 }
} else {
// If we extract more than one field, we pass the value down as
// the tuple that it is.
quote! { #substate_result }
};
let fetch = if collecting_into_container {
// This is for symmetry with the AsXml implementation part. Please
// see there for why we cannot do option magic in the collection
// case.
fetch
} else {
// This little ".into()" here goes a long way. It relies on one of
// the most underrated trait implementations in the standard
// library: `impl From<T> for Option<T>`, which creates a
// `Some(_)` from a `T`. Why is it so great? Because there is also
// `impl From<Option<T>> for Option<T>` (obviously), which is just
// a move. So even without knowing the exact type of the substate
// result and the field, we can make an "downcast" to `Option<T>`
// if the field is of type `Option<T>`, and it does the right
// thing no matter whether the extracted field is of type
// `Option<T>` or `T`.
//
// And then, type inference does the rest: There is ambiguity
// there, of course, if we call `.into()` on a value of type
// `Option<T>`: Should Rust wrap it into another layer of
// `Option`, or should it just move the value? The answer lies in
// the type constraint imposed by the place the value is *used*,
// which is strictly bound by the field's type (so there is, in
// fact, no ambiguity). So this works all kinds of magic.
quote_spanned! {
output_ty.span()=>
<#output_ty as ::core::convert::From::<#inner_ty>>::from(#fetch)
}
};
Ok((extra_defs, matcher, fetch, from_xml_builder_ty))
}
/// Construct
/// [`FieldIteratorPart::Content::extra_defs`],
/// the [`FieldIteratorPart::Content::value`] init,
/// and the iterator type.
fn make_as_item_iter_parts(
&self,
scope: &AsItemsScope,
input_ty: &Type,
container_name: &ParentRef,
bound_name: &Ident,
member: &Member,
iterating_container: bool,
) -> Result<(TokenStream, TokenStream, Type)> {
let AsItemsScope { ref lifetime, .. } = scope;
let xml_namespace = &self.xml_namespace;
let xml_name = &self.xml_name;
let item_iter_ty_ident = scope.make_member_type_name(member, "AsXmlIterator");
let state_ty_ident = quote::format_ident!("{}State", item_iter_ty_ident,);
let mut item_iter_ty = ty_from_ident(item_iter_ty_ident.clone());
item_iter_ty.path.segments[0].arguments =
PathArguments::AngleBracketed(AngleBracketedGenericArguments {
colon2_token: None,
lt_token: token::Lt::default(),
args: [GenericArgument::Lifetime(lifetime.clone())]
.into_iter()
.collect(),
gt_token: token::Gt::default(),
});
let item_iter_ty = item_iter_ty.into();
let tuple_ty = self.parts.to_ref_tuple_ty(lifetime);
let (repack, inner_ty) = match self.parts.single_ty() {
Some(single_ty) => (
quote! { #bound_name, },
ref_ty(single_ty.clone(), lifetime.clone()),
),
None => {
let mut repack_tuple = TokenStream::default();
// The cast here is sound, because the constructor of Compound
// already asserts that there are less than 2^32 fields (with
// what I think is a great error message, go check it out).
for i in 0..(tuple_ty.elems.len() as u32) {
let index = Index {
index: i,
span: Span::call_site(),
};
repack_tuple.extend(quote! {
&#bound_name.#index,
})
}
let ref_tuple_ty = ref_ty(self.parts.to_tuple_ty().into(), lifetime.clone());
(repack_tuple, ref_tuple_ty)
}
};
let extra_defs = self
.parts
.make_as_item_iter_statemachine(
&container_name.child(member.clone()),
&state_ty_ident,
"",
lifetime,
)?
.with_augmented_init(|init| {
quote! {
let name = (
::xso::exports::rxml::Namespace::from(#xml_namespace),
::std::borrow::Cow::Borrowed(#xml_name),
);
#init
}
})
.compile()
.render(
&Visibility::Inherited,
&tuple_ty.into(),
&state_ty_ident,
lifetime,
&item_iter_ty,
)?;
let (make_iter, item_iter_ty) = if iterating_container {
// When we are iterating a container, the container's iterator's
// item type may either be `&(A, B, ...)` or `(&A, &B, ...)`.
// Unfortunately, to be able to handle both, we need to omit the
// magic Option cast, because we cannot specify the type of the
// argument of the `.map(...)` closure and rust is not able to
// infer that type because the repacking is too opaque.
//
// However, this is not much of a loss, because it doesn't really
// make sense to have the option cast there, anyway: optional
// elements in a container would be weird.
(
quote! {
#item_iter_ty_ident::new((#repack))?
},
item_iter_ty,
)
} else {
// Again we exploit the extreme usefulness of the
// `impl From<T> for Option<T>`. We already wrote extensively
// about that in [`make_from_xml_builder_parts`] implementation
// corresponding to this code above, and we will not repeat it
// here.
// These sections with quote_spanned are used to improve error
// messages on type mismatches. Without these, the rustc errors
// will point at `#[derive(AsXml)]` only, instead of directly
// pointing at the sources of those types.
let cast = quote_spanned! { input_ty.span()=>
::core::option::Option::from(#bound_name)
};
let type_assert = quote_spanned! { inner_ty.span()=>
::core::option::Option<#inner_ty>
};
(
quote! {
::xso::asxml::OptionAsXml::new({ let x: #type_assert = #cast; x.map(|#bound_name: #inner_ty| {
#item_iter_ty_ident::new((#repack))
})}.transpose()?)
},
option_as_xml_ty(item_iter_ty),
)
};
Ok((extra_defs, make_iter, item_iter_ty))
}
}