xso_proc/field/
child.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
// Copyright (c) 2024 Jonas Schäfer <jonas@zombofant.net>
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

//! This module concerns the processing of typed child elements.
//!
//! In particular, it provides both `#[xml(extract)]` and `#[xml(child)]`
//! implementations in a single type.

use proc_macro2::{Span, TokenStream};
use quote::{quote, quote_spanned};
use syn::{spanned::Spanned, *};

use crate::compound::Compound;
use crate::error_message::{self, ParentRef};
use crate::meta::{AmountConstraint, Flag, NameRef, NamespaceRef};
use crate::scope::{AsItemsScope, FromEventsScope};
use crate::types::{
    as_xml_iter_fn, default_fn, extend_fn, from_events_fn, from_xml_builder_ty,
    into_iterator_into_iter_fn, into_iterator_item_ty, into_iterator_iter_ty, item_iter_ty,
    option_as_xml_ty, option_ty, ref_ty, ty_from_ident,
};

use super::{Field, FieldBuilderPart, FieldIteratorPart, FieldTempInit, NestedMatcher};

/// The field maps to a child
pub(super) struct ChildField {
    /// Flag indicating whether the value should be defaulted if the
    /// child is absent.
    pub(super) default_: Flag,

    /// Number of child elements allowed.
    pub(super) amount: AmountConstraint,

    /// If set, the child element is not parsed as a field implementing
    /// `FromXml` / `AsXml`, but instead its contents are extracted.
    pub(super) extract: Option<ExtractDef>,
}

impl Field for ChildField {
    fn make_builder_part(
        &self,
        scope: &FromEventsScope,
        container_name: &ParentRef,
        member: &Member,
        ty: &Type,
    ) -> Result<FieldBuilderPart> {
        let (element_ty, is_container) = match self.amount {
            AmountConstraint::FixedSingle(_) => (ty.clone(), false),
            AmountConstraint::Any(_) => (into_iterator_item_ty(ty.clone()), true),
        };

        let (extra_defs, matcher, fetch, builder) = match self.extract {
            Some(ref extract) => extract.make_from_xml_builder_parts(
                scope,
                container_name,
                member,
                is_container,
                ty,
            )?,
            None => {
                let FromEventsScope {
                    ref substate_result,
                    ..
                } = scope;

                let from_events = from_events_fn(element_ty.clone());
                let from_xml_builder = from_xml_builder_ty(element_ty.clone());

                let matcher = quote! { #from_events(name, attrs) };
                let builder = from_xml_builder;

                (
                    TokenStream::default(),
                    matcher,
                    quote! { #substate_result },
                    builder,
                )
            }
        };

        let field_access = scope.access_field(member);
        match self.amount {
            AmountConstraint::FixedSingle(_) => {
                let missing_msg = error_message::on_missing_child(container_name, member);
                let duplicate_msg = error_message::on_duplicate_child(container_name, member);

                let on_absent = match self.default_ {
                    Flag::Absent => quote! {
                        return ::core::result::Result::Err(::xso::error::Error::Other(#missing_msg).into())
                    },
                    Flag::Present(_) => {
                        let default_ = default_fn(element_ty.clone());
                        quote! {
                            #default_()
                        }
                    }
                };

                Ok(FieldBuilderPart::Nested {
                    extra_defs,
                    value: FieldTempInit {
                        init: quote! { ::core::option::Option::None },
                        ty: option_ty(ty.clone()),
                    },
                    matcher: NestedMatcher::Selective(quote! {
                        match #matcher {
                            ::core::result::Result::Ok(v) => if #field_access.is_some() {
                                ::core::result::Result::Err(::xso::error::FromEventsError::Invalid(::xso::error::Error::Other(#duplicate_msg)))
                            } else {
                                ::core::result::Result::Ok(v)
                            },
                            ::core::result::Result::Err(e) => ::core::result::Result::Err(e),
                        }
                    }),
                    builder,
                    collect: quote! {
                        #field_access = ::core::option::Option::Some(#fetch);
                    },
                    finalize: quote! {
                        match #field_access {
                            ::core::option::Option::Some(value) => value,
                            ::core::option::Option::None => #on_absent,
                        }
                    },
                })
            }
            AmountConstraint::Any(_) => {
                let ty_extend = extend_fn(ty.clone(), element_ty.clone());
                let ty_default = default_fn(ty.clone());
                Ok(FieldBuilderPart::Nested {
                    extra_defs,
                    value: FieldTempInit {
                        init: quote! { #ty_default() },
                        ty: ty.clone(),
                    },
                    matcher: NestedMatcher::Selective(matcher),
                    builder,
                    collect: quote! {
                        #ty_extend(&mut #field_access, [#fetch]);
                    },
                    finalize: quote! { #field_access },
                })
            }
        }
    }

    fn make_iterator_part(
        &self,
        scope: &AsItemsScope,
        container_name: &ParentRef,
        bound_name: &Ident,
        member: &Member,
        ty: &Type,
    ) -> Result<FieldIteratorPart> {
        let AsItemsScope { ref lifetime, .. } = scope;

        let (item_ty, is_container) = match self.amount {
            AmountConstraint::FixedSingle(_) => (ty.clone(), false),
            AmountConstraint::Any(_) => {
                // This should give us the type of element stored in the
                // collection.
                (into_iterator_item_ty(ty.clone()), true)
            }
        };

        let (extra_defs, init, iter_ty) = match self.extract {
            Some(ref extract) => extract.make_as_item_iter_parts(
                scope,
                ty,
                container_name,
                bound_name,
                member,
                is_container,
            )?,
            None => {
                let as_xml_iter = as_xml_iter_fn(item_ty.clone());
                let item_iter = item_iter_ty(item_ty.clone(), lifetime.clone());

                (
                    TokenStream::default(),
                    quote! { #as_xml_iter(#bound_name)? },
                    item_iter,
                )
            }
        };

        match self.amount {
            AmountConstraint::FixedSingle(_) => Ok(FieldIteratorPart::Content {
                extra_defs,
                value: FieldTempInit { init, ty: iter_ty },
                generator: quote! {
                    #bound_name.next().transpose()
                },
            }),
            AmountConstraint::Any(_) => {
                // This is the collection type we actually work
                // with -- as_xml_iter uses references after all.
                let ty = ref_ty(ty.clone(), lifetime.clone());

                // But the iterator for iterating over the elements
                // inside the collection must use the ref type.
                let element_iter = into_iterator_iter_ty(ty.clone());

                // And likewise the into_iter impl.
                let into_iter = into_iterator_into_iter_fn(ty.clone());

                let state_ty = Type::Tuple(TypeTuple {
                    paren_token: token::Paren::default(),
                    elems: [element_iter, option_ty(iter_ty)].into_iter().collect(),
                });

                Ok(FieldIteratorPart::Content {
                    extra_defs,
                    value: FieldTempInit {
                        init: quote! {
                            (#into_iter(#bound_name), ::core::option::Option::None)
                        },
                        ty: state_ty,
                    },
                    generator: quote! {
                        loop {
                            if let ::core::option::Option::Some(current) = #bound_name.1.as_mut() {
                                if let ::core::option::Option::Some(item) = current.next() {
                                    break ::core::option::Option::Some(item).transpose();
                                }
                            }
                            if let ::core::option::Option::Some(item) = #bound_name.0.next() {
                                #bound_name.1 = ::core::option::Option::Some({
                                    let #bound_name = item;
                                    #init
                                });
                            } else {
                                break ::core::result::Result::Ok(::core::option::Option::None)
                            }
                        }
                    },
                })
            }
        }
    }
}

/// Definition of what to extract from a child element.
pub(super) struct ExtractDef {
    /// The XML namespace of the child to extract data from.
    pub(super) xml_namespace: NamespaceRef,

    /// The XML name of the child to extract data from.
    pub(super) xml_name: NameRef,

    /// Compound which contains the arguments of the `extract(..)` meta
    /// (except the `from`), transformed into a struct with unnamed
    /// fields.
    ///
    /// This is used to generate the parsing/serialisation code, by
    /// essentially "declaring" a shim struct, as if it were a real Rust
    /// struct, and using the result of the parsing process directly for
    /// the field on which the `extract(..)` option was used, instead of
    /// putting it into a Rust struct.
    pub(super) parts: Compound,
}

impl ExtractDef {
    /// Construct
    /// [`FieldBuilderPart::Nested::extra_defs`],
    /// [`FieldBuilderPart::Nested::matcher`],
    /// an expression which pulls the extraction result from
    /// `substate_result`,
    /// and the [`FieldBuilderPart::Nested::builder`] type.
    fn make_from_xml_builder_parts(
        &self,
        scope: &FromEventsScope,
        container_name: &ParentRef,
        member: &Member,
        collecting_into_container: bool,
        output_ty: &Type,
    ) -> Result<(TokenStream, TokenStream, TokenStream, Type)> {
        let FromEventsScope {
            ref substate_result,
            ..
        } = scope;

        let xml_namespace = &self.xml_namespace;
        let xml_name = &self.xml_name;

        let from_xml_builder_ty_ident = scope.make_member_type_name(member, "FromXmlBuilder");
        let state_ty_ident = quote::format_ident!("{}State", from_xml_builder_ty_ident,);

        let extra_defs = self.parts.make_from_events_statemachine(
            &state_ty_ident,
            &container_name.child(member.clone()),
            "",
        )?.with_augmented_init(|init| quote! {
            if name.0 == #xml_namespace && name.1 == #xml_name {
                #init
            } else {
                ::core::result::Result::Err(::xso::error::FromEventsError::Mismatch { name, attrs })
            }
        }).compile().render(
            &Visibility::Inherited,
            &from_xml_builder_ty_ident,
            &state_ty_ident,
            &self.parts.to_tuple_ty().into(),
        )?;
        let from_xml_builder_ty = ty_from_ident(from_xml_builder_ty_ident.clone()).into();

        let matcher = quote! { #state_ty_ident::new(name, attrs).map(|x| #from_xml_builder_ty_ident(::core::option::Option::Some(x))) };

        let inner_ty = self.parts.to_single_or_tuple_ty();

        let fetch = if self.parts.field_count() == 1 {
            // If we extract only a single field, we automatically unwrap the
            // tuple, because that behaviour is more obvious to users.
            quote! { #substate_result.0 }
        } else {
            // If we extract more than one field, we pass the value down as
            // the tuple that it is.
            quote! { #substate_result }
        };

        let fetch = if collecting_into_container {
            // This is for symmetry with the AsXml implementation part. Please
            // see there for why we cannot do option magic in the collection
            // case.
            fetch
        } else {
            // This little ".into()" here goes a long way. It relies on one of
            // the most underrated trait implementations in the standard
            // library: `impl From<T> for Option<T>`, which creates a
            // `Some(_)` from a `T`. Why is it so great? Because there is also
            // `impl From<Option<T>> for Option<T>` (obviously), which is just
            // a move. So even without knowing the exact type of the substate
            // result and the field, we can make an "downcast" to `Option<T>`
            // if the field is of type `Option<T>`, and it does the right
            // thing no matter whether the extracted field is of type
            // `Option<T>` or `T`.
            //
            // And then, type inference does the rest: There is ambiguity
            // there, of course, if we call `.into()` on a value of type
            // `Option<T>`: Should Rust wrap it into another layer of
            // `Option`, or should it just move the value? The answer lies in
            // the type constraint imposed by the place the value is *used*,
            // which is strictly bound by the field's type (so there is, in
            // fact, no ambiguity). So this works all kinds of magic.
            quote_spanned! {
                output_ty.span()=>
                    <#output_ty as ::core::convert::From::<#inner_ty>>::from(#fetch)
            }
        };

        Ok((extra_defs, matcher, fetch, from_xml_builder_ty))
    }

    /// Construct
    /// [`FieldIteratorPart::Content::extra_defs`],
    /// the [`FieldIteratorPart::Content::value`] init,
    /// and the iterator type.
    fn make_as_item_iter_parts(
        &self,
        scope: &AsItemsScope,
        input_ty: &Type,
        container_name: &ParentRef,
        bound_name: &Ident,
        member: &Member,
        iterating_container: bool,
    ) -> Result<(TokenStream, TokenStream, Type)> {
        let AsItemsScope { ref lifetime, .. } = scope;

        let xml_namespace = &self.xml_namespace;
        let xml_name = &self.xml_name;

        let item_iter_ty_ident = scope.make_member_type_name(member, "AsXmlIterator");
        let state_ty_ident = quote::format_ident!("{}State", item_iter_ty_ident,);
        let mut item_iter_ty = ty_from_ident(item_iter_ty_ident.clone());
        item_iter_ty.path.segments[0].arguments =
            PathArguments::AngleBracketed(AngleBracketedGenericArguments {
                colon2_token: None,
                lt_token: token::Lt::default(),
                args: [GenericArgument::Lifetime(lifetime.clone())]
                    .into_iter()
                    .collect(),
                gt_token: token::Gt::default(),
            });
        let item_iter_ty = item_iter_ty.into();
        let tuple_ty = self.parts.to_ref_tuple_ty(lifetime);

        let (repack, inner_ty) = match self.parts.single_ty() {
            Some(single_ty) => (
                quote! { #bound_name, },
                ref_ty(single_ty.clone(), lifetime.clone()),
            ),
            None => {
                let mut repack_tuple = TokenStream::default();
                // The cast here is sound, because the constructor of Compound
                // already asserts that there are less than 2^32 fields (with
                // what I think is a great error message, go check it out).
                for i in 0..(tuple_ty.elems.len() as u32) {
                    let index = Index {
                        index: i,
                        span: Span::call_site(),
                    };
                    repack_tuple.extend(quote! {
                        &#bound_name.#index,
                    })
                }
                let ref_tuple_ty = ref_ty(self.parts.to_tuple_ty().into(), lifetime.clone());
                (repack_tuple, ref_tuple_ty)
            }
        };

        let extra_defs = self
            .parts
            .make_as_item_iter_statemachine(
                &container_name.child(member.clone()),
                &state_ty_ident,
                "",
                lifetime,
            )?
            .with_augmented_init(|init| {
                quote! {
                    let name = (
                        ::xso::exports::rxml::Namespace::from(#xml_namespace),
                        ::std::borrow::Cow::Borrowed(#xml_name),
                    );
                    #init
                }
            })
            .compile()
            .render(
                &Visibility::Inherited,
                &tuple_ty.into(),
                &state_ty_ident,
                lifetime,
                &item_iter_ty,
            )?;

        let (make_iter, item_iter_ty) = if iterating_container {
            // When we are iterating a container, the container's iterator's
            // item type may either be `&(A, B, ...)` or `(&A, &B, ...)`.
            // Unfortunately, to be able to handle both, we need to omit the
            // magic Option cast, because we cannot specify the type of the
            // argument of the `.map(...)` closure and rust is not able to
            // infer that type because the repacking is too opaque.
            //
            // However, this is not much of a loss, because it doesn't really
            // make sense to have the option cast there, anyway: optional
            // elements in a container would be weird.
            (
                quote! {
                    #item_iter_ty_ident::new((#repack))?
                },
                item_iter_ty,
            )
        } else {
            // Again we exploit the extreme usefulness of the
            // `impl From<T> for Option<T>`. We already wrote extensively
            // about that in [`make_from_xml_builder_parts`] implementation
            // corresponding to this code above, and we will not repeat it
            // here.
            let cast = quote_spanned! { input_ty.span()=>
                ::core::option::Option::from(#bound_name)
            };
            (
                quote! {
                    ::xso::asxml::OptionAsXml::new(#cast.map(|#bound_name: #inner_ty| {
                        #item_iter_ty_ident::new((#repack))
                    }).transpose()?)
                },
                option_as_xml_ty(item_iter_ty),
            )
        };

        Ok((extra_defs, make_iter, item_iter_ty))
    }
}